Making sense of data了解数据:探索数据分析与数据挖掘实用指南 azw3 极速 lit 地址 下载 rb pdf mobi

Making sense of data了解数据:探索数据分析与数据挖掘实用指南电子书下载地址
- 文件名
- [epub 下载] Making sense of data了解数据:探索数据分析与数据挖掘实用指南 epub格式电子书
- [azw3 下载] Making sense of data了解数据:探索数据分析与数据挖掘实用指南 azw3格式电子书
- [pdf 下载] Making sense of data了解数据:探索数据分析与数据挖掘实用指南 pdf格式电子书
- [txt 下载] Making sense of data了解数据:探索数据分析与数据挖掘实用指南 txt格式电子书
- [mobi 下载] Making sense of data了解数据:探索数据分析与数据挖掘实用指南 mobi格式电子书
- [word 下载] Making sense of data了解数据:探索数据分析与数据挖掘实用指南 word格式电子书
- [kindle 下载] Making sense of data了解数据:探索数据分析与数据挖掘实用指南 kindle格式电子书
内容简介:
A practical, step-by-step approach to making sense out of data
Making Sense of Data educates readers on the steps and issues that need to be considered in order to successfully complete a data analysis or data mining project. The author provides clear explanations that guide the reader to make timely and accurate decisions from data in almost every field of study. A step-by-step approach aids professionals in carefully analyzing data and implementing results, leading to the development of smarter business decisions. With a comprehensive collection of methods from both data analysis and data mining disciplines, this book successfully describes the issues that need to be considered, the steps that need to be taken, and appropriately treats technical topics to accomplish effective decision making from data.
Readers are given a solid foundation in the procedures associated with complex data analysis or data mining projects and are provided with concrete discussions of the most universal tasks and technical solutions related to the analysis of data, including:
* Problem definitions
* Data preparation
* Data visualization
* Data mining
* Statistics
* Grouping methods
* Predictive modeling
* Deployment issues and applications
Throughout the book, the author examines why these multiple approaches are needed and how these methods will solve different problems. Processes, along with methods, are carefully and meticulously outlined for use in any data analysis or data mining project.
From summarizing and interpreting data, to identifying non-trivial facts, patterns, and relationships in the data, to making predictions from the data, Making Sense of Data addresses the many issues that need to be considered as well as the steps that need to be taken to master data analysis and mining.
书籍目录:
Preface
1 Introduction
1.1 Overview
1.2 Problem definition
1.3 Data preparation
1.4 Implementation of the analysis
1.5 Deployment of the results
1.6 Book outline
1.7 Summary
1.8 Further reading
2 Definition
2.1 Overview
2.2 Objectives
2.3 Deliverables
2.4 Roles and responsibilities
2.5 Project plan
2.6 Case study
2.6.1 Overview
2.6.2 Problem
2.6.3 Deliverables
2.6.4 Roles and responsibilities
2.6.5 Current situation
2.6.6 Timetable and budget
2.6.7 Cost/benefit analysis
2.7 Summary
2.8 Further reading
3 Preparation
3.1 Overview
3.2 Data sources
3.3 Data understanding
3.3.1 Data tables
3.3.2 Continuous and discrete variables
3.3.3 Scales of measurement
3.3.4 Roles in analysis
3.3.5 Frequency distribution
3.4 Data preparation
3.4.1 Overview
3.4.2 Cleaning the data
3.4.3 Removing variables
3.4.4 Data transformations
3.4.5 Segmentation
3.5 Summary
3.6 Exercises
3.7 Further reading
4 Tables and graphs
4.1 Introduction
4.2 Tables
4.2.1 Data tables
4.2.2 Contingency tables
4.2.3 Summary tables
4.3 Graphs
4.3.1 Overview
4.3.2 Frequency polygrams and histograms
4.3.3 Scatterplots
4.3.4 Box plots
4.3.5 Multiple graphs
4.4 Summary
4.5 Exercises
4.6 Further reading
5 Statistics
5.1 Overview
5.2 Descriptive statistics
5.2.1 Overview
5.2.2 Central tendency
5.2.3 Variation
5.2.4 Shape
5.2.5 Example
5.3 Inferential statistics
5.3.1 Overview
5.3.2 Confidence intervals
5.3.3 Hypothesis tests
5.3.4 Chi-square
5.3.5 One-way analysis of variance
5.4 Comparative statistics
5.4.1 Overview
5.4.2 Visualizing relationships
5.4.3 Correlation coefficient (r)
5.4.4 Correlation analysis for more than two variables
5.5 Summary
5.6 Exercises
5.7 Further reading
6 Grouping
6.1 Introduction
6.1.1 Overview
6.1.2 Grouping by values or ranges
6.1.3 Similarity measures
6.1.4 Grouping approaches
6.2 Clustering
6.2.1 Overview
6.2.2 Hierarchical agglomerative clustering
6.2.3 K-means clustering
6.3 Associative rules
6.3.1 Overview
6.3.2 Grouping by value combinations
6.3.3 Extracting rules from groups
6.3.4 Example
6.4 Decision trees
6.4.1 Overview
6.4.2 Tree generation
6.4.3 Splitting criteria
6.4.4 Example
6.5 Summary
6.6 Exercises
6.7 Further reading
7 Prediction
7.1 Introduction
7.1.1 Overview
7.1.2 Classification
7.1.3 Regression
7.1.4 Building a prediction model
7.1.5 Applying a prediction model
7.2 Simple regression models
7.2.1 Overview
7.2.2 Simple linear regression
7.2.3 Simple nonlinear regression
7.3 K-nearest neighbors
7.3.1 Overview
7.3.2 Learning
7.3.3 Prediction
7.4 Classification and regression trees
7.4.1 Overview
7.4.2 Predicting using decision trees
7.4.3 Example
7.5 Neural networks
7.5.1 Overview
7.5.2 Neural network layers
7.5.3 Node calculations
7.5.4 Neural network predictions
7.5.5 Learning process
7.5.6 Backpropagation
7.5.7 Using neural networks
7.5.8 Example
7.6 Other methods
7.7 Summary
7.8 Exercises
7.9 Further reading
8 Deployment
8.1 Overview
8.2 Deliverables
8.3 Activities
8.4 Deployment scenarios
8.5 Summary
8.6 Further reading
9 Conclusions
9.1 Summary of process
9.2 Example
9.2.1 Problem overview
9.2.2 Problem definition
9.2.3 Data preparation
9.2.4 Implementation of the analysis
9.2.5 Deployment of the results
9.3 Advanced data mining
9.3.1 Overview
9.3.2 Text data mining
9.3.3 Time series data mining
9.3.4 Sequence data mining
9.4 Further reading
Appendix A Statistical tables
A.1 Normal distribution
A.2 Student’s t-distribution
A.3 Chi-square distribution
A.4 F-distribution
Appendix B Answers to exercises
Glossary
Bibliography
Index
作者介绍:
GLENN J. MYATT, PhD, is cofounder of Leadscope, Inc., a data mining company providing solutions to the pharmaceutical and chemical industry. He has also acted as a part-time lecturer in chemoinformatics at The Ohio State University and has held a series o
出版社信息:
暂无出版社相关信息,正在全力查找中!
书籍摘录:
暂无相关书籍摘录,正在全力查找中!
在线阅读/听书/购买/PDF下载地址:
原文赏析:
暂无原文赏析,正在全力查找中!
其它内容:
书籍介绍
A practical, step-by-step approach to making sense out of data
Making Sense of Data educates readers on the steps and issues that need to be considered in order to successfully complete a data analysis or data mining project. The author provides clear explanations that guide the reader to make timely and accurate decisions from data in almost every field of study. A step-by-step approach aids professionals in carefully analyzing data and implementing results, leading to the development of smarter business decisions. With a comprehensive collection of methods from both data analysis and data mining disciplines, this book successfully describes the issues that need to be considered, the steps that need to be taken, and appropriately treats technical topics to accomplish effective decision making from data.
Readers are given a solid foundation in the procedures associated with complex data analysis or data mining projects and are provided with concrete discussions of the most universal tasks and technical solutions related to the analysis of data, including:
* Problem definitions
* Data preparation
* Data visualization
* Data mining
* Statistics
* Grouping methods
* Predictive modeling
* Deployment issues and applications
Throughout the book, the author examines why these multiple approaches are needed and how these methods will solve different problems. Processes, along with methods, are carefully and meticulously outlined for use in any data analysis or data mining project.
From summarizing and interpreting data, to identifying non-trivial facts, patterns, and relationships in the data, to making predictions from the data, Making Sense of Data addresses the many issues that need to be considered as well as the steps that need to be taken to master data analysis and mining.
网站评分
书籍多样性:4分
书籍信息完全性:8分
网站更新速度:9分
使用便利性:8分
书籍清晰度:9分
书籍格式兼容性:8分
是否包含广告:8分
加载速度:7分
安全性:7分
稳定性:3分
搜索功能:7分
下载便捷性:5分
下载点评
- 五星好评(633+)
- 还行吧(150+)
- 超值(128+)
- txt(175+)
- 博大精深(142+)
- 可以购买(471+)
- 二星好评(680+)
- 差评(629+)
- 推荐购买(637+)
下载评价
- 网友 戈***玉:
特别棒
- 网友 蓬***之:
好棒good
- 网友 曹***雯:
为什么许多书都找不到?
- 网友 曾***玉:
直接选择epub/azw3/mobi就可以了,然后导入微信读书,体验百分百!!!
- 网友 相***儿:
你要的这里都能找到哦!!!
- 网友 谭***然:
如果不要钱就好了
- 网友 訾***晴:
挺好的,书籍丰富
- 网友 谢***灵:
推荐,啥格式都有
- 网友 益***琴:
好书都要花钱,如果要学习,建议买实体书;如果只是娱乐,看看这个网站,对你来说,是很好的选择。
- 网友 訾***雰:
下载速度很快,我选择的是epub格式
- 网友 师***怀:
好是好,要是能免费下就好了
- 网友 国***舒:
中评,付点钱这里能找到就找到了,找不到别的地方也不一定能找到
- 网友 通***蕊:
五颗星、五颗星,大赞还觉得不错!~~
- 网友 温***欣:
可以可以可以
- 网友 龚***湄:
差评,居然要收费!!!
- 网友 石***致:
挺实用的,给个赞!希望越来越好,一直支持。
喜欢"Making sense of data了解数据:探索数据分析与数据挖掘实用指南"的人也看了
农业保险承保实务 azw3 极速 lit 地址 下载 rb pdf mobi
西溪心影/杭州全书西溪丛书 azw3 极速 lit 地址 下载 rb pdf mobi
亮晶晶的鸡蛋 azw3 极速 lit 地址 下载 rb pdf mobi
古医籍稀见版本影印存真文库 小儿推拿直录 錢櫰村著 中医古籍出版社ttx azw3 极速 lit 地址 下载 rb pdf mobi
二胡考级曲目大全(初中级1-6级) azw3 极速 lit 地址 下载 rb pdf mobi
网络舆情概论(21世纪新媒体专业系列教材) azw3 极速 lit 地址 下载 rb pdf mobi
金融风险量化理论 azw3 极速 lit 地址 下载 rb pdf mobi
Libertad!自由派作家们 azw3 极速 lit 地址 下载 rb pdf mobi
李毓佩数学故事系列·智斗系列全8册 李毓佩数学童话集小学数学趣味阅读 奇妙的数王国儿童读物6-12岁小学中高年级2-3年级一二三四五六思维训练趣味数学课外读物 azw3 极速 lit 地址 下载 rb pdf mobi
运筹学应用 azw3 极速 lit 地址 下载 rb pdf mobi
- 技术管理与政策随笔 azw3 极速 lit 地址 下载 rb pdf mobi
- perhaps 也许的样子 益智玩教具礼盒 进口原版 azw3 极速 lit 地址 下载 rb pdf mobi
- 一年级的小蜜瓜(全彩注音版) azw3 极速 lit 地址 下载 rb pdf mobi
- 清穆宗同治传(精)/中华历代帝王传 azw3 极速 lit 地址 下载 rb pdf mobi
- 甲方代表工作手册 azw3 极速 lit 地址 下载 rb pdf mobi
- 小公主苏菲亚梦想与成长枕边故事书 azw3 极速 lit 地址 下载 rb pdf mobi
- 全新正版图书 礼记胡平生中华书局9787101128567 礼仪中国古代普通大众人天图书专营店 azw3 极速 lit 地址 下载 rb pdf mobi
- 扑朔如雪的翅膀 【正版】 azw3 极速 lit 地址 下载 rb pdf mobi
- 导游证考试用书2019真题汇编与机考题库 政策与法律法规+导游业务+导游基础知识+地方导游基础知识(套装共4册) azw3 极速 lit 地址 下载 rb pdf mobi
- 犯罪学学科论 azw3 极速 lit 地址 下载 rb pdf mobi
书籍真实打分
故事情节:9分
人物塑造:7分
主题深度:4分
文字风格:5分
语言运用:3分
文笔流畅:6分
思想传递:7分
知识深度:3分
知识广度:8分
实用性:4分
章节划分:7分
结构布局:7分
新颖与独特:3分
情感共鸣:8分
引人入胜:3分
现实相关:7分
沉浸感:4分
事实准确性:6分
文化贡献:7分